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Estimation of transition rates in dynamic
household models

D. Courgeau and E. Leliévre

ABSTRACT

This chapter deals with the estimation of instantaneous transition rates in
nonparametric, semiparametric, and parametric models. The bivariate and
multivariate problems are introduced and discussed using data Jrom a
retrospective life history survey, undertaken in France, 1981.

11.1. Introduction

THE construction of dynamic household models requires comprehensive
knowledge of the demographic events which lead to household formation
and dissolution. The interplay between these events in individual cases may
be observed by using prospective or retrospective data sets. We will here show
how such data sets allow the estimation of transition rates between states of
the family cycle. Such transition rates can be applied in macromodels (as dis-
cussed by Keilman in chapter 9) as well as in micromodels (examples of which
are given by Willekens in chapter 7 and by Galler in chapter 10).

There are three types of interactions between demographic phenomena:
interactions in which one phenomenon prevents the occurrence of another
phenomenon, those that create the preconditions for new phenomena,
and those that neither impede nor bring about a phenomenon (Courgeau,
1979).

An example of the first type of interaction is the selection which occurs by
virtue of survival when studying marriage. In order correctly to estimate
probabilities for each event in the pure (undisturbed) state, one usually makes
the hypothesis of ‘non-dependence’, namely, that an individual who died
single would have had the same behaviour, had he lived, as individuals who
did not die at the same age (Henry, 1972).

The second type of interaction concerns events that enable the occurrence
of other events which would not have been possible without the occurrence of
the initial event. For instance, marriage allows legitimate reproduction.

The third type is intermediate: the disturbing phenomehon neither impedes
nor brings about another phenomenon. The concept of local dependence
may be introduced (Schweder, 1970) to study these interactions. This concept
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formalizes the intuitive notion that a stochastic process may influence the
development of another process. Hence, local dependence is a dynamic
property developing with time. It always has a certain direction since the first
process may be locally dependent on the second one, while this second pro-
cess is locally independent of the first one (Aalen ef al., 1980). Such a situa-
tion may be extended to more than one type of event for each interacting
phenomenon.

Different types of observational plans may be available to collect the
information, and since the measurement of the interactions is dependent on
these plans, we must introduce the two principal ones: prospective and
retrospective observational plans.!

In a prospective observational plan the individuals are sampled randomly
before the events of interest take place. -Such a sample may be a cohort of
individuals born in a given year followed prospectively by a follow-up survey.
Some of the individuals may die before the events take place, others may
experience these events. Such a follow-up design is rarely used in demo-
graphic studies because it is expensive and often not cost-effective, given the
often considerable amount of drop-out. Moreover, the time needed
to get sufficient information on household formation and dissolution
prevents prompt reporting. However, the accuracy of such reports may be
excellent.

In a retrospective observational plan, data are collected only from sur-
vivors, which induces a selection by virtue of survival; reliability and validity
of retrospectively reported information is not assessed here (Hoem, 1983);
nor are register and survey data compared (Lyberg, 1983). However, such an
observational plan, which needs only one interview, is an appealing alterna-
tive. It is mainly used for demographic studies in countries where register
data either do not exist or are unable to provide an answer to specific research
questions.

These two kinds of observational plans create problems of censoring which
are important for this paper. Right censoring, which occurs in both prospec-
tive and retrospective observations, is not too problematic. We will see later
how we can obtain unbiased estimates of transition rates. Left censoring,
which may occur when the observation starts at an arbitrary point in time,
presents more complicated problems.2 In such cases we are unable to estimate
the effects of past history, occurring before this arbitrary time, without
making far-reaching assumptions. We may assume either that the process
studied begins at the first date of observation, or that the history of the
process prior to this date does not affect the future of the process. Such
an assumption is not always realistic. Yet it is necessary because of
the extremely complicated analytical problems that would arise if it had not
been made.

This paper deals with the estimation of instantaneous transition rates,
which generalize hazard functions for multivariate event histories of
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individuals. We will restrict our discussion to right-censored event histories
since, as we have seen, left censoring is very problematic.

The survey data used here record to the nearest month the dates of status
changes. Such detailed event histories will allow us to work with continuous
time models (Tuma and Hannan, 1984, pp. 82-8). However, it seems impor-
tant to go beyond this concept. It appears that, even if the exact timing of
each event is correctly registered, such a precise time may be far removed
from the time generated by the relational systems within which an individual
lives. These events do not occur in a linear and continuous time but in a more
‘fuzzy time’. It thus seems important to introduce this ‘fuzzy time’ concept.
Let us see how this can be done.

We will consider here the interaction between leaving the agricultural
sector and marrying. In a number of cases these two events may take place
almost simultaneously for the same individual, some marrying shortly before
leaving the agricultural sector, others leaving the agricultural sector shortly
before marrying. Under these conditions it is not significant which event
takes place first. The two events can therefore be considered to occur simulta-
neously, even if there is a certain time-lag between them. The introduction of
a ‘fuzzy time’ allows us to analyse these almost simultaneous events. We will
see later how this concept of fuzzy time may be defined.

We will present here different methods of analysing these interactions. The
first approach (section 11.2) is a nonparametric one, which generalizes the
usual demographic methods of longitudinal analysis to the case of complex
interactions. A new impetus was recently given to the development of the
mathematical apparatus needed to estimate hazard rates and to construct
confidence intervals for such nonparametric models (Aalen, 1978; J ohansen,
1983). The second approach is semiparametric or even fully parametric
(section 11.3). The introduction of (semi)parametric models in demography
took place only recently, but their use is rapidly becoming more widespread.
Here, we will consider the instantaneous transition rate as a dependent vari-
able, and introduce a relationship between this rate and a variety of observed
variables.

The purpose of this paper is to develop methods for estimating transition
rates, using a detailed data set. Rather than presenting general techniques, we
prefer to discuss a few concrete examples, since they illustrate appropriately
the problems that arise when estimating these rates. However, the methods
presented here are quite general and they may, with slight modifications, be
used in very diverse situations.

The data used here consist of the retrospective life histories of a random
sample of individuals aged 45-69, living in France in 1981. These data were
collected from a nationwide sample and for this survey we obtained 4,602
questionnaires, with a response rate of approximatively 89 per cent. Its pur-
pose was to study the migration, family, and work histories of the French
population (compare Courgeau, 1985).
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11.2. Nonparametric methods of analysis

The first type of method is a classical longitudinal analysis, generalized to
deal with more complex dependencies between life history events. Let us first
consider the very simple case of an independent sample from a homogeneous
population with a single event.

Let Tbe a non-negative random variable indicating the time at which a par-
ticular event occurs. The survivor function is the probability that T'is at least
as great as a value #:

F(t) = Pr(T > t).

The key nonparametric approach to estimating the survivor function is
derived from Kaplan and Meier’s (1958) paper giving a product-limit estima-
tor for the survivor function where no assumption is made about its func-
tional form.

Another concept closely related to the survivor function is the hazard func-
tion. It specifies the instantaneous failure rate at T = ¢, conditional upon
survival to time ¢, and is defined as:

Pr(T<t+At|T> 1) dlog F(t)

h@) = lim At - dt

Thus the logarithm of the Kaplan-Meier estimator can be used to estimate
the hazard function. This will give good asymptotic estimates of the hazard
function for large samples. However, for small samples the Kaplan-Meier
approach is biased and therefore Aalen (1978) used martingale theory to
derive a better estimator. These functions may arise in the same way for con-
tinuous and discrete cases where the Dirac delta functions handle the discrete
distributions.?

When some individuals are censored at time ¢ they are usually included in
the number of individuals under consideration until, and at, time 7. After this
time they will no longer appear in this population.

Let us now first consider the bivariate case, before trying to handle the
multivariate case.

11.2.1. The bivariate problem

We will here consider the relationship between getting married and leaving
the agricultural sector. But as we said earlier, such a model is applicable to
any bivariate situation.

Here, we work in terms of the state space diagram, given in Figure 11.1. We
now have two types of failure time represented by random variables 7, and
T,: T,is the age at leaving the agricultural sector; T, the age at marriage. In
our sample everybody starts in state 0. However, an individual in state 1 may
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F1G. 11.1. State space diagram for the bivariate case

return to state 0 if he is not married. On the other hand, we consider only first
marriage.

The previous hazard function defined in the univariate case can be
generalized into four hazard functions:

Pr(Ty<t+ At|T, 2t, T, 2 1)
At

hoa @) = El_g

with a similar one for 2,(¢), while

Pr(T, —
hlz(t|u)= lim r( 2<t+At|T1 u, T, =2 t)

>
A0 At r>u

with a similar one for A, (¢|u).

It is also possible to introduce simultaneous occurrence of the two types of
failure A (2).

Though a fully satisfactory nonparametric procedure of estimation has not
yet been found (Cox and Oakes, 1984, p. 163), we will present some approxi-
mated estimates. To do this, we have to gain insight into the studied
phenomena.

As mentioned above, these events do not occur in a linear and continuow
time but in a ‘fuzzy time’. It therefore seems more important to introduce this
fuzziness than to give a nonparametric procedure of estimation.

Let us first consider, for example, the marriage behaviour of men who are
on the verge of leaving the agricultural sector. Such behaviour may be closer
to that of men who have already left this sector, than to that of men who
remain in it. It therefore seems better to consider such individuals as having
left the agricultural sector.

On the other hand, let us consider the attitude towards the labour market
of men who are on the verge of marrying. Again, such behaviour may be
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closer to that of men who are already married than to that of bachelors. It
thus seems better to consider such individuals as being married. The problem
is now how to introduce such a ‘fuzzy time’.

Different possibilities are open to us. We may focus on the_ decision-
making process. Let us assume a time-lag ¢, between actually leaving the
agricultural sector and the decision to leave it, and another time-lag ¢,
between marriage and the decision to marry. Although we realize that taking
such decisions is a gradual process, we may introduce different time-lags,
from one month to one year, for example, and observe how the results
differ.*

We used a similar procedure for our French survey, taking a one-year time-
lag. This procedure, less accurate than the previous one, is easier to imple-
ment, as it introduces a time-discrete version of the nonparametric model.
Let us have a closer look at the estimates to which it leads. Censored
individuals will not be taken into account.

Let N;(¢) (( = 0,1,2) be the population in state i at the beginning of year ¢.
Let n;(¢) be the number of occurrences of type j in the population in state i.
Let r,4(¢) and r;,(¢) be the number of people returning to the agricultural
sector.

We assume that the simultaneous events occurring to the same individual
during the same year (this occurs only for 5 per cent of the observed popula-
tion) are related to the corresponding population at risk.’> As we have a
limited number of observations (668 men and 519 women) we assume that the
behaviour of the observed individuals will depend only on their age and not
on the time the previous event occurred. With this assumption we can
estimate the following hazard rates by observed occurrence/exposure rates
using the total time at risk during year ¢ and assuming that both types of
events occur uniformly throughout the interval:

A1) = ny () ’
u® No(t) — 3o () + ngp(t) — ryp(®))
Aot _ ny (%) ,
u(f[4) Ny(t) — 21y (@) — ngp(®) = ru(@))

. ne(?)

R (t) = ‘ :
2 () No(®) = $(np(®) + ngy(2) — rip(®))

iilZ(tlu) = nlz(t)

N\ = 30120) + rio®) — 1))

We are then able to compare A, (¢) with A, (¢) (respectively, hg,(¢) with
h;,(t)) to see whether or not the behaviour of unmarried individuals (of
individuals working in the farming or nonfarming sector, respectively) is
different. To do this, we may use test statistics given in Hoem and Funck
Jensen (1982).
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F1G. 11.2. Probabilities of remaining single inside or outside the farm sector, and

probabilities of remaining in the farm sector, by marital status

Figure 11.2 shows the results for the estimated survivor functions in each
of the four defined states. The behaviour of men and women is very different.
For men, the probability of remaining single is significantly higher for those
in the agricultural sector than for others, while for women it is the same in
both categories. On the other hand, for men there is no significant difference
in the probability of leaving the agricultural sector between those who are
unmarried and those who are married, while married women remain in the
farming sector significantly more often than unmarried women. Hence, in
terms of local dependence, we find the following: for men, being in the farm-
ing sector diminishes their probability of marriage, while being married or
not does not influence the probability of them leaving the farming sector. For
women the reverse is true.
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11.2.2. The multivariate problem

We will consider here, as an example of the multivariate problem, the interac-
tion between migration occurring after marriage and marital fertility. The
state space is presented in Figure 11.3. We can also introduce failure times
represented in each of the two dimensions by random variables T;,
T,...T...formigrationand T', 7%,. .. T". . . for childbirths.

A state is specified as an ordered pair (k,n) where k is the number of moves
previously experienced and n the number of children previously born. We
have hazard functions between all these states of the following kind
(for migration):

hZ,k+l(t|ul9-'-’uk9 V,,,...,Vl) =

O Pr(T <t+ AT 2t Ti=ty,..., i =up T"=V,, ..., T'=v)
lim .
A0 At

Evidently, such a model cannot be estimated with a small number of indi-
viduals, as in our survey, and we have to make some further assumptions. Let
us assume that a migration hazard function is dependent on its rank, on the
time since the last move (#) and on the time since the last childbirth (v). With
these assumptions, we can write for the hazard function

. Pl <t+ AT, 28, T, =u,T =V)
R @t|u,v) = B‘_‘}) Ar : .

- Number of children

0 1 2

0 H' (t) H2 (t)
. o (”1 her (t)l hes (t)l
E hi'(t) hE(t)
- — —_ _
3
g ho 1 2
3 (1) hiz (t) hia () l

01
o ha (t) hZ (t)

| L

Fi1G. 11.3. State space diagram for the multivariate case
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For the childbearing hazard function we have similar hypotheses:

PrT*' <t + AT > 8, T, = u, T" =
R ¢l = Tim 2 | k 128
A0 At

We assume further, that both of the two previous functions are indepen-
dent of u and v, and that Af,,,(¢) depends only on n, whereas hp"*'(¢)
depends only on k.

Under these assumptions it is possible to estimate the hazard rates. They
will allow us to answer the following two.questions:

e What will be the effects of n births after marriage on the migration
process?

e What will be the effects of having undertaken & moves after marriage on
the childbearing intensity?

We can obtain a cumulative spatial mobility index until time ¢ for the
hypothetical population of women of parity n (or the cumulative fertility of
women with & moves). However, as the risk set may be small for short
durations and values of n or k greater than zero, we assume that if the risk set
contains less than 50 individuals, the cumulative mobility index (or the
cumulative marital fertility) of couples with 7 children (kK moves) is the same
as that of couples with (n — 1) children ( (k— 1) moves).

Figure 11.4 gives the results for women born in 1911-25, married to men
born in 1911-35.6 We classify these women according to their age at marriage
(15-22, 23-30). For women who married young, there is a clear effect of
family size on the cumulative number of moves: the greater the size, the more
mobile the subpopulation will be. However, such an effect, although striking
for the lower birth ranks, is less perceptible for the higher ones. For the same
women we can also see that some moves are undertaken to provide for forth-
coming births. ]

For women married after the age of 22 years, the effect of family size on the
number of moves undertaken has entirely disappeared. These women, com-
pared with the younger ones, appear to have a dwelling sufficiently large to
anticipate their ultimate family size. But, on the other hand, the cumulative
fértility of these women according to their number of previous moves
indicates that some of those moves are undertaken to provide for forthcom-
ing births. Thus, in this case, we have a local dependence of fertility on spatial
mobility: if no more moves are undertaken after or during the year of a birth
in the household, it appears that some moves may be undertaken in expecta-
tion of future births.

The assumptions applied here seem very restrictive, because they take into
account only the longer term effects on the level of each of the two status
dimensions considered (childbearing parity and number of moves
experienced). It will then be important to take into account the short-term
after-effects of the occurrence of one event on the other. In this case, if the
birth of a child modifies the migratory behaviour of his parents, then

Estimating transition rates in dynamic models 169

T T T /’_P—' bl T T T T
2 moves ya 1 move
/‘ ...........
/ .~ "Nomoves
/- 2 moves
25F - - 250 , .
! o7 L move,
/'/.':. ./'4.“. No moves
2.0} /4 - 20F -
§ lF & 7
e} ; S 4
z / = 4
2 / o 1
5 b ) .
g 15F / = g 15F / 7
o / g f
2 / 2 7
=10t 4 =1oF [ .
0.5} - 0.5 -
Age at marriage Age at marriage
between 15 & 22 between 23 & 30
yearsold years old
| | 1 1 | 1 1 1
5 10 15 20 5 10 15 20
Duration of marriage
T T T T ] | E— T T
7
2 children.” ..
20+ /./‘_." - 20 -
./..'-".
7/ -1 child 2 children -1
Lo -t
s ] et
7. i} Lo
n 1.5 ./‘.' — 3 15k /o o
ﬂé // g S Z1 child
k] £ N /
K 5 P
o) s £ :
£10F 7 . 5 1.0 £ -
2 7 ) c /
c / /No child §  |Nochid .7
3 / =2 7
= ! /
05 £ = 05 /7 =
I Age at marriage Age at marriage
between 15 &22 4 between 23 & 30
years old ) years old
| 1 | 1 1 1 | |
5 10 15 20 5 10 15 20

Duration of marriage

Fi1G. 11.4. Mean number of moves for women having 0, 1, or 2 children, and mean
number of children for women having undertaken 0, 1, or 2 moves, according to age
at marriage and marriage duration (women born in 1911-1925)



170 D. Courgeau and E. Leliévre Estimating transition rates in dynamic models 171
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When introducing the father’s occupation, a number of interesting results
appear (model 4). Unmarried men and women exhibit the same behaviour
when their father is a farmer: they leave the farming sector to a lesser extent
than married men and women. This may be because they are to inherit their
father’s farm. Once married, the interaction is significant but in the opposite
direction. There is no longer any difference in behaviour between them,
irrespective of whether or not their father is a farmer.

Model 5 includes a covariate in the time-dependent part of the model and
not in the constant part. It measures whether or not the father-in-law is a
farmer. Again, such a variable has a very clear effect: it lowers the degree to
which both sexes leave the agricultural sector, once married. However, these
rates remain very close to previous ones.

This example shows how such an approach will be important for future
demographic research, especially when improving it by introducing interac-
tion effects. We will not consider them here.

11.3.2. A split of the multivariate problem into parametric models

.

We shall now introduce exogenous variables into the previous analysis of
migration related to childbearing. To do this we will split up this complex
problem into parametric or semiparametric models. Let us take the migration
process as being the main one, and introduce the other variables as explana-
tory variables.

As before, let T? be the duration of residence of an individual. We can
write his survival probability as a function of a vector x; of characteristics of
the individual at the beginning of the observation period. Hence

F(t;x;,0) = Pr(T? > t; x,, 0)
where 0 is a parameter vector which we have to estimate.
We can also define a probability density function for migration as:
im Pr < TP<t+ At;x;,0)
At—0 At
oF(t; x;, 0) .
at

f(t; xi! 0)

However, as we are working on retrospective survey data we have for some
duration of residence a censored observation, so that 7; < 77. As censoring
times are in this case stochastically independent of each other and of the
failure time, we can write

Pr(T; < t+ At 6, = 1,x,,0) = O,(t) f(¢; x;, 0) At,
Pr(T, <t + At 8, = 0, x;,0) = q,(t) F@t; x;, 0) At,

where 8, is a dummy variable that is equal to zero if the ith item is censored,
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and equal to one if it is not censored; O;(¢) and g,(¢) are the survivor and
density functions for censoring.

As neither O, nor g; are informative about 6, the likelihood of the data is
proportional to

n

II f@sx., 0) % F@t; x,, 00 %

i=1

where 7 is the number of observed durations of residence.

It is then possible to estimate the parameter vector # with maximum likeli-
hood methods. It has been shown that the asymptotic distribution of 6 is
multivariate normal with mean 8. When using the Newton-Raphson tech-
nique to find the maximum of the likelihood function, we also have an
estimate of the covariance matrix of these parameters.

We suppose here that the instantaneous migration rate is related to the
observable variables in a generalized Gompertz model:

h(t; x;,0) = exp(Ox; + 0,41).

‘Previous migration analyses show a very good fit of regression models to
Gompertz’s duration of residence effect (Ginsberg, 1979). We suppose that
the other variables act multiplicatively on the migration rate.

We will not present here the detailed analysis we undertook in another
paper (Courgeau, 1985), using 37 variables, introducing first age group
variables with duration of residence, then family life cycle variables, tenure
status variables, career variables, and finally some more general variables
introducing war periods or periods of economic crisis. We will only give as an
example the reduction of age effects when introducing different kinds of
variables. Figure 11.5 shows the multiplicative effect of age on mobility

T T T T I

age and duration effects -
— — = age, duration and family effects

—-—- age, duration, family and tenure

5k status effects —
----- age, duration, family, tenure status,
economical and political effects

T i
T il
i ~
1 - -~.-__-------_i--~—-A~---—‘--. \ |
| ! : ' —

L . - 35 40 45

Age

F1c. 11.5. Age-specific multiplicative effect on mobility according to the set of
considered variables: males born in 1931-1935
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according to the set of considered variables, for the male cohort born in
1931-35.7

When introducing only age and duration effects, we have a curve that is
very close to the curve we obtain with period data: a maximum migration rate
for the age group 20-4 years, and an important reduction for the older age
groups. When introducing family variables, this age effect is reduced for the
age group 15-24. Introducing tenure status variables yields a new reduction
of this age effect for all age groups. Later, the introduction of the whole set of
variables cancels out any age effect. Hence, for this cohort we are able to
explain all age effects usually noted in the different stages of the individual’s
family, economic, and political life.

11.4. Conclusion

We have here covered the entire spectrum of analyses, from nonparametric
models to fully parametric ones, via semiparametric models. We have also
introduced univariate analyses, bivariate ones, and finally more complex
multivariate analyses. Through this exploration, some important issues for
future research have appeared. We will pin-point them and give some sugges-
tions for future research.

An important problem was that we were not able to estimate complete
models because this would require a huge sample with many observations in
each cell. Such detailed information was not available. Therefore, we intro-
duced some assumptions on the main effects. In order to do so we mainly
used earlier experiences with demographic data. For example, this applies to
the prominent effect of the duration since the last event rather than to the
duration since earlier ones. Such hypotheses need to be explored in more
detail. With more surveys containing event history data, we will be able to
give a more solid basis to these hypotheses. However, to do this we will need
larger samples than usual.

Another problem will be to introduce more time-dependent explanatory
variables into these analyses. When revisiting the bivariate problem we intro-
duced such a time-dependent variable, namely, being married or not at time 7.
Such an approach needs to be generalized. In the parametric approach we
only allow for the value of the parallel process at the beginning of each event
interval. Obviously, these life cycle variables, tenure status variables, and
career variables may change in between moves or births. It will be important,
in future work, to try to incorporate such time-dependent explanatory pro-
cesses as well.

A third problem did not appear clearly from the previous analyses but
seems very important for further research. We introduced previously dif-
ferent explanatory variables to control their effect. However, other char-
acteristics of the studied individuals interfere with them, while we do not have
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any possibility of measuring these characteristics. We can incorporate this
unobserved heterogeneity (Tuma and Hannan, 1984, pp. 155-86) into the
models. However, research on this problem has only just begun, and its pos-
sible solutions will most likely appear in future research.

Last but not least, we have introduced a ‘fuzzy time’ that leads to very
important problems which are difficult to deal with. The estimation of transi-
tion rates needs a very precise time scale on which events can be placed. How-
ever, when studying demographic events, we do not observe such a time scale,
but rather a more ‘fuzzy time’. It does not seem important, when working

'with a time interval of six months or even a year, to know which event
| occurred first (for example a birth or a migration). The analysis on a very pre-

cise time scale may lead to inconsistent results with a sociological analysis.
One way to avoid such inconsistencies may be to introduce a time which is not
ordered linearly. For example, this may occur in a two-dimensional time-
space: the first dimension may be our common time; the other, a hazardous
time that will be added to or subtracted from the continuous time. This pos-
sibility is open to further research.
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Notes

1. We will not consider here another commonly used observational plan, namely
panel data. Such data are usually so scarce that it is difficult to know the exact
timing of every demographic event.

2. Indemographic surveys, such as the ORIN Survey in the Netherlands, left censor-
ing, rather than left truncation, arises (Klijzing, chapter 4). Left truncation arises
when individuals come under observation only some known time after the natural
time origin of the phenomenon under study. That is, had the individual failed
before the truncation time in question, that individual would not have been
recorded (Cox and Oakes, 1984). Such a truncation leads to a maximum likelihood
fitting of any parametric or nonparametric model.

3. Such a function §(¢) is defined so that 6 (¢#) dt = 1if ¢t = 0, otherwise 6(¢) dt = 0.

4. Nico Keilman is trying to use this approach to study interrelations between migra-
tion and birth events.

5. It is also possible to exclude them and to compute rates as /;(¢) in Figure 11.1.

6. For reasons of clarity, we consider only moderate family size and moderate
numbers of migration.

7. Such an effect is measured by the antilog of the parameters (exp 6). When it is equal
to one, the behaviour of the considered age group will be the same as the behaviour
of the comparison group (40 years and over). To undertake this analysis we use the
Fortran computer programme ‘R ATE’, written by N. Tuma and D. Pasta.
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