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Modeling distances between humans using Taylor’s law
and geometric probability
Joel E. Cohen a and Daniel Courgeaub

aLaboratory of Populations, The Rockefeller University and Columbia University, New York, NY, USA;
bInstitut national d’études démographiques, Paris, France

ABSTRACT
Taylor’s law states that the variance of the distribution of
distance between two randomly chosen individuals is a
power function of the mean distance. It applies to the dis-
tances between two randomly chosen points in various geo-
metric shapes, subject to a few conditions. In Réunion Island
and metropolitan France, at some spatial scales, the empirical
frequency distributions of inter-individual distances are pre-
dicted accurately by the theoretical frequency distributions of
inter-point distances in models of geometric probability under
a uniform distribution of points. When these models fail to
predict the empirical frequency distributions of inter-individual
distances, they provide baselines against which to highlight
the spatial distribution of population concentrations.
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Introduction

In animal ecology, Taylor (1961, 1986) compared aggregation from the distribu-
tion of population densities across subgroups of a given population. In demo-
graphy, Courgeau (1970, 1973) and Bell et al. (2015) compared internal
migrations from the distribution of distances between two randomly chosen
individuals in human populations from different countries. Here we relate these
two perspectives on the spatial distribution of populations. We link empirical
data from human populations to models based on geometric probability.

Taylor’s (1961) law (also known as Taylor’s power law) asserts that the
logarithm of the variance Var(X) of the density X of a set of comparable
groups is a linear function of the logarithm of the mean density E(X), or
equivalently that there exist constants a > 0 and b such that

Var Xð Þ ¼ a E Xð Þb: (1)

Taylor’s law has been verified, using the sample mean and the sample
variance as estimates of the population mean and variance, in cosmology,
with the emission spectra of x-ray binary systems and active galactic nuclei
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(Uttley and McHardy, 2001); in ecology, with population densities of bacteria
(Ramsayer et al., 2012), plants, insects, and animals (Taylor et al., 1978); and
in social sciences, with the spatial distribution of human population densities
(Cohen et al., 2013).

Social groups are organized according to rules generating spatial struc-
tures. Examples include urbanization for humans and colonies for termitaries
and anthills. Different regions, including the different subgroups considered
in Taylor’s law, may not be independent of one another in the presence of
migration. The distribution of the distances between two randomly chosen
individuals is another way of describing the spatial distribution of popula-
tions. It has been modeled as the distribution of the distances between two
randomly chosen points in various geometric regions, using geometric
probability.

Geometric probability originated with Buffon (1733), who studied the
spatial distribution of different kinds of randomly distributed objects.
Crofton (1885) calculated the probability that a figure formed by n points
randomly distributed on a given surface possesses a specific property
independently of any overall translation or rotation. One such property
concerns the distance between two randomly selected points. Barton et al.
(1963) in chromosome analysis; Kuiper and Paelinck (1982) in geography;
Moltchanov (2012) in network analysis; Courgeau (1970), Courgeau and
Baccaïni (1989), and Rogerson (1990) in demography; and Parry and
Fischbach (2000) in physics have addressed such questions. However,
these models use uniform distributions and only an approximation of
nonuniform distributions with a finite number of points. Spatial point
process models use geometric probability to describe the arrangement and
interactions of objects unevenly or randomly distributed on a plane or in
a space (Boutin and Kemper, 2004; Illian et al., 2008).

We show that the distribution of distances between two random indi-
viduals obeys Taylor’s law with exponent b = 2 in a Euclidean space of
any finite dimension, for all regions of the same shape as a given bounded
region of any shape (section 1). The space may be continuous or discrete
and the total number of points may be finite or infinite, subject to a few
conditions. The case b = 2 has special significance. When b = 2, the
coefficient of variation, which is the ratio of the standard deviation
(Var Xð ÞÞ1=2 of the density X to the mean density E Xð Þ, equals a1=2 for
all values of E Xð Þ. For nonnegative random variables such as population
density X, the coefficient of variation equals the reciprocal of the signal-
to-noise ratio, which is the mean divided by the standard deviation. When
b = 2, the signal-to-noise ratio equals a�1=2 for all values of E Xð Þ.
Conversely, when the coefficient of variation is constant, then Taylor’s
law holds with b = 2.
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We shall review and extend results related to geometric probability for
different territorial shapes, including an annulus (section 2). We confirm that
the distribution of distances between two random individuals obeys Taylor’s law
with exponent b = 2 in these cases. In section 3, we consider a finite space and a
finite number of individuals to examine the effect of spatial variation in popula-
tion density and how these results are modified by territorial and social con-
straints. We give simulated and empirical examples (sections 2 and 3).

1. Application of Taylor’s law with geometric probability

The intuition behind the theorem in section 1.2 is that for any family of
similar shapes, both the mean distance between two randomly chosen points
and the standard deviation of the distance between two randomly chosen
points scale linearly with rescaling (e.g., by changing the radius of a circle or
the side of a regular polygon, and similarly for any shape) and, therefore, the
variance scales as the second power of the mean. This intuition applies to all
cases in section 2.

1.1. Definitions and preliminary results

In plane geometry, two shapes are defined to be “similar” if one can be
transformed into another by rescaling, rotation, reflection (mirror image),
and translation. For example, all equilateral triangles are similar, all circles
are similar, and all squares are similar, but no equilateral triangle is similar to
a square or to a right triangle.

ℝ is the real line, and N any fixed positive integer. ℝN is the N-dimensional
space of real vectors x ¼ x1; :::; xNð Þ. For any two points x and y in ℝN, the
Euclidean distance between them is

r x; yð Þ ¼
XN
i¼1

xi � yið Þ2
 !1

2

: (2)

The Euclidean N-space (ℝN, r(., .)) is the set ℝN of N-dimensional real
points together with the metric r(., .), which gives the Euclidean distance
r(x, y) between two points x and y in ℝN.

S is any fixed set of points in ℝN. It may be continuous or discrete, and
the total number of points in S may be finite or infinite. For any two
points x and y in S, r(x, y) is not necessarily bounded, though by defini-
tion of ℝN, r(x, y) = ∞ is excluded. For convenience, we take S as
continuous. ℝ+ is the set of positive finite real numbers (0, +∞). For any
c in ℝ+, define the rescaling of S by c as the set of points cS; cx j x 2 Sf g.
Define the family S(S) of S to comprise all sets of points in ℝN obtained
from S by rescaling S by any finite positive c, and all translations, reflec-
tions, and rotations of all rescalings of S.
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For example, if N = 1 and S = [0, 1], then the family S(S) consists of all
closed intervals of the real line ℝ. If N = 2 and S is the unit disk, then
S(S) is the family of all closed disks of any radius centered anywhere in
the plane.

Consider a probability density function pS on the points of S:

for any x in S; 0 � pS xð Þ and �
x2S

pS xð Þ dx ¼ 1: (3)

If S is a set in ℝN, then the infinitesimal volume element is

YN
i¼1

dxi: (4)

Define the random distance XS to be the random variable constructed by
picking x in S with probability pS xð Þdx, independently picking y in S with
probability pS yð Þdy, and computing the Euclidean distance r x; yð Þ between
the chosen points. Define the mean and the standard deviation of the
random distance XS on S as

μ Sð Þ ¼ E XSð Þ ¼ � x; y2S r x; yð Þ pS xð Þ pS yð Þ dx dy ; (5)

σ Sð Þ ¼ E XS � μ Sð Þð Þ2� �� � 1
2 ¼ � x;y2Sðrðx; yÞ � μðSÞÞ2 pSðxÞ pSðyÞ dx dyÞ 1

2:
�

(6)

We assume that 0 < μ(S), thus excluding S consisting of a single point
because r x; xð Þ ¼ 0. We also assume that 0 < σ(S), thus excluding S consist-
ing of exactly two points or the vertices of an equilateral triangle. We finally
assume that μ(S) < ∞, and that σ(S) < ∞. The last two conditions hold true if
S is bounded (there exists k in ℝ+ such that, for all x, y in S, r x; yð Þ � k) but
may also hold true if S is not bounded, depending on the probability density
function p(.).

Under these assumptions, we define the variance of XS on S as the square
of its standard deviation: Var Sð Þ ¼ σ2 Sð Þ. The coefficient of variation of the
random distance XS on S is

CVðSÞ ¼ σðSÞ
μðSÞ : (7)

Then 0 < CV(S) < ∞.

Lemma 1

Consider x and y two points in ℝN. Then for any c in ℝ+, r cx; cyð Þ ¼ cr x; yð Þ.
That is, rescaling any two points x, y by the factor c rescales the Euclidean
distance r(x, y) by the same factor c. Rotating around a point, reflecting the
space with respect to a subspace, and translating x and y by the same vector
have no effect on the distance between them.
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Proof.

r cx; cyð Þ ¼
XN
i¼1

cxi � cyið Þ2
 !1

2

¼
XN
i¼1

c2 xi � yið Þ2
 !1

2

¼ c r x; yð Þ: (8)

Lemma 2

If cS is a rescaling of S by c in ℝ+, define the probability density function pcS
on the points of cS by pcS cxð Þ ¼ pS xð Þ=cN for all points cx in cS, or equiva-
lently for all points x in S. Then pcS is a probability density function on cS.

Proof. By construction, pcS cxð Þ � 0. Because the infinitesimal of the
volume element d(cx) in cS is the product of the infinitesimals of each
dimension,

d cxð Þ ¼
YN
i¼1

d cxið Þ ¼
YN
i¼1

c dxið Þ ¼ cN dx (9)

we have

� y¼cx2cS pcS yð Þ dy ¼ � x2S
pS xð Þ
cN

d cxð Þ ¼ � x2S
pS xð Þ
cN

cNd xð Þ
¼ � x2S pS xð Þ dx ¼ 1: (10)

1.2. Theorem and theoretical example

S is a set of at least three points in the N-dimensional Euclidean space (ℝN, r(., .))
such that not all pairs of points are equidistant. S(S) is the infinite family of sets of
points in ℝN including all rescalings of S, namely, f cS j c 2 ℝ+g, all translations,
all reflections, and all rotations of all rescalings, translations, and reflections of S.
With a probability density function pS on the points of S and the probability
density function pcS on the points of cS defined by pcS cxð Þ ¼ pS xð Þ=cN for all
points cx in cS, for any set s in S(S), μ(s) is the mean and σ(s) the standard
deviation of the distance between two randomly chosen points. Assume 0 < μ(S) <
∞ and 0 < σ(S) < ∞. Then

μ sð Þ ¼ cμ Sð Þ; σ sð Þ ¼ cσ Sð Þ; CV sð Þ ¼ CV Sð Þ: (11)

The last equality in (11) holds independently of c, and the variance of the
random distance on s satisfies

VarðsÞ ¼ ðCVðSÞÞ2ðμðsÞÞ2: (12)

This is Taylor’s law with a = (CV(S))2 and exponent b = 2.
Proof. Because rotations, reflections, and translations have no effect on

the distance X cSð Þ, we need to examine only the effects of rescaling S by c in
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ℝ+. By definition of the mean μ(.), using pcS cxð Þ ¼ pS xð Þ=cN for all points cx
in cS or equivalently for all points x in S

μ sð Þ ¼ E XcSð Þ ¼ � u; v2cS rðu; vÞ pcS uð Þ pcS vð Þ du dv
¼ � x; y2S r cx; cyð Þ pcS cxð Þ pcS cyð Þ cNdx cN dy

¼ � x; y2S cr x; yð Þ pS xð Þ
cN

� �
pS yð Þ
cN

� �
cNdx cN dy

¼ c � x; y2S r x; yð Þ pS xð Þ pS yð Þ dx dy ¼ cμ Sð Þ: (13)

The proof that σ sð Þ ¼ c σ Sð Þ follows the same steps, starting from the defini-
tion of the standard deviation. Dividing the equation σ sð Þ ¼ c σ Sð Þ by the
equation on μ sð Þ ¼ c μ Sð Þ gives

CV sð Þ ¼ CV Sð Þ; (14)

which implies σ sð Þ ¼ CV(S)μ sð Þ. Squaring both sides of Eq. (14) gives
Var sð Þ ¼ σ2 sð Þ ¼ (CV(S))2 μ sð Þð Þ2, which is Taylor’s law with exponent b = 2.▭

Nothing in this theorem requires that the shape S be topologically
connected.

The space can be extended from real to complex with an appropriate
Euclidean distance, the Minkowski 2-norm,

x� yj j2 ¼
XN
i¼1

xi � yij jð Þ2
 !1

2

: (15)

The theorem extends to all Minkowski p-norms

x� yj jp ¼
Xp
i¼1

xi � yij jð Þp
 !1

p

; (16)

for any 1 ≤ p <∞ (Steele, 2004: 140) or to any homogeneous metric r x; yð Þ
such that r cx; cyð Þ ¼ cr x; yð Þ.

As an example, consider the whole plane ℝ2, and the normal distribution
N μ; c2ð Þ on ℝ2 with mean μ and standard deviation c. μ has no effect on the
difference between two points, so the distribution of the distance X μ; c2ð Þ
between two points randomly selected from N μ; c2ð Þ is the same for any μ.
Increasing or decreasing c leaves the geometric region (which here is the
whole plane) unchanged but spreads or contracts the domain of the prob-
ability density function over the plane. This example satisfies the assump-
tions of the theorem. Therefore, X μ; c2ð Þ, the distance between two randomly
selected points, satisfies Taylor’s law with b = 2 for all c > 0, translations,
reflections, and rotations.

Because the difference between two independent normal variables, each of
which is identically distributed as N μ; c2ð Þ, has the distribution N 0; 2c2ð Þ, the
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absolute value of that difference has the so-called “half-normal” distribution
with E X μ; c2ð Þð Þ ¼ 2c=π1=2 � 1:1284 c and Var X μ; c2ð Þð Þ ¼ 2c2 1� 2=πð Þ.
Thus Taylor’s law Var X μ; c2ð Þð Þ ¼ a E X μ; c2ð Þð Þb holds with a = π/2 – 1, b
= 2 for all c > 0. This example can be extended to a bivariate normal
distribution on ℝ2 with or without correlation between the x- and the y-axes.

2. Population uniformly distributed across a territory

We review some distributions of distances between two randomly chosen
points and calculate their expected value and variance to show Taylor’s law
with b = 2, now assuming that the population is uniformly distributed across
the territory.

2.1. Segment of the real line

Consider a linear territory of length R > 0. The distance X between two
points chosen at random on the line has the probability density function f
(Borel, 1924):

f rð Þ ¼ 2
R

1� r
R

� �
; 0 � r � R: (17)

Integrating with respect to r yields the cumulative distribution function F of
the random variable X:

F rð Þ ¼ 2
R

r � r2

2R

� �
; 0 � r � R: (18)

The mean distance between individuals is

E Xð Þ ¼ R
3
; (19)

and its variance

Var Xð Þ ¼ R2

18
: (20)

This distribution obeys Taylor’s law with exponent b ¼ 2,
because Var Xð Þ ¼ 1

2 E Xð Þð Þ2.

2.2. Disk and sphere

On a two-dimensional disk of radius R, the distance r between two points
chosen at random has the probability density function f (Borel, 1924;
Garwood, 1947; Luu Mau Thanh, 1962; Barton et al., 1963; Moltchanov,
2012):

MATHEMATICAL POPULATION STUDIES 7



f ðrÞ ¼ 4r
π R2

Arc cos
r
2R

� �
� r
2R

1� r2

4R2

� �1=2
 !

: (21)

The cumulative distribution function is

F rð Þ ¼ 1þ 2
π

r2

R2
� 1

� �
Arc cos

r
2R

� �
� r
πR

1þ r2

2R2

� �
1� r2

4R2

� �1=2

: (22)

The mean distance between individuals is

E Xð Þ ¼ 128R
45π

� 0:9054R; (23)

and the variance is

Var Xð Þ ¼ R2 � 128R
45π

� �2

� 0:0934R2: (24)

This distribution obeys Taylor’s law, with b ¼ 2.
All moments of order p may be written (Tu and Fischbach, 2002):

μp ¼ 2pþ2 2
pþ 2

� �
B 3

2 ;
3þp
2

� �
B 3

2 ;
1
2

� � Rp; (25)

where B p; qð Þ is the beta function, leading, for ap > 0, to the relationship

μp ¼ ap μ1
� �p

; (26)

which is Taylor’s law for all moments (Giometto et al., 2015).
For a three-dimensional sphere, we have (Borel, 1924):

f rð Þ ¼ 3
R3

r2 � 3r3

4R
þ r5

16R3

� �
: (27)

The cumulative distribution function is

F rð Þ ¼ 3
R3

r3

3
� 3r4

16R
þ r6

96R3

� �
: (28)

The mean distance between individuals is

E Xð Þ ¼ 36
35

R � 1:0286R; (29)

and its variance is

Var Xð Þ ¼ 1:2R2 � 36
35

R

� �2

� 0:142R2: (30)

This distribution obeys Taylor’s law with exponent 2.
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2.3. Square

In a square of side R (Borel, 1924; Garwood, 1947; Luu Mau Thanh, 1962),
the distribution of the distance r between two randomly selected points has
probability density function f such that:

f ðrÞ ¼ 2r
R4

πR2 � 4Rr þ r2
� �

; 0 � r � R; (31)

f ðrÞ ¼ 2r
R4

2R2 Arc sin
R
r
� Arc cos

R
r
� 1

� �
þ 4R r2 � R2

� �1=2 � r2
� �

;

R < r � R
ffiffiffi
2

p
: (32)

The mean distance is

E Xð Þ ¼ R
15

2þ
ffiffiffi
2

p
þ 5 ln 1þ

ffiffiffi
2

p� �� �
� 0:5214R; (33)

and its variance is

Var Xð Þ ¼ R2

225
69� 4

ffiffiffi
2

p
� 10 2þ

ffiffiffi
2

p� �
ln 1þ

ffiffiffi
2

p� �
� 25 ln2 1þ

ffiffiffi
2

p� �� �
� 0:0615R2:

(34)

This distribution obeys Taylor’s law with b ¼ 2.
To show how the different shapes affect the probability density functions,

Figure 1 presents the curves for a circle and a square with the same mean
distance 0.5. For the circle, the diameter equals 1.10448; for the square, the
side equals 0.95895 and the maximum distance is 1.3562.

Only the tail of the distribution differs. If two points are randomly selected
with a uniform distribution from a country with boundaries that are more
complicated than those of a circle or a square, only the tails of the distribu-
tion of distances between those two points are likely to be substantially
affected. The core of the distribution is likely to remain unchanged.

2.4. Annulus

Consider an annulus (the area between two concentric circles) with an inner
radius of R1 and an outer radius of R2. To our knowledge, this case has never
been studied until now. The Réunion Island offers a real-life approximation.
Its central region, occupied by high mountains and an active volcano, is
uninhabitable and its territory has a roughly circular shape. The humanly
habitable zone of the island has the shape of an annulus (Figure 2).

We seek the distribution of the straight-line distance between two random
points P and Q drawn independently of one another in the annulus. An
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alternative to the linear distance between two points is a curvilinear path
running within the annulus, but calculations are more complicated. The
angle formed by PQ

	!
and a direction fixed at the beginning of the calculations

is uniformly distributed in the interval 0; 2π½ �. If the angle lies in the interval

Distance

Probability density

0.0 0.5 1.0
0.00

0.05

0.10

0.15

Circle

Square

Figure 1. Distribution of distances between two random points from a circle (solid line) and a
square (dashed line) with the same mean distance of 0.5.

Figure 2. Inhabited areas in Réunion Island. Source: Bénard, 2012. © 2012 Fiona Sora. Reproduced
by permission of Fiona Sora. Permission to reuse must be obtained from the rightsholder.

10 J. E. COHEN AND D. COURGEAU



[ω; ωþ dω) and if the distance |PQ| lies in the interval [r; r þ dr), then P,
whose position is constrained by r, must lie in the set of areas S common to
the initial annulus and to the annulus obtained by the translation by vector

QP
	!

(Figure 3). For a given position P, Q is located in the area element
r dr dω, and the different angles are given in Figure 3.

The cosines of the angles shown in Figure 3 are cos α1ð Þ ¼ r
2R1

,

cos α2ð Þ ¼ r
2R2

, cos α3ð Þ ¼ r2þR2
1�R2

2
2rR1

, and cos α4ð Þ ¼ r2þR2
2�R2

1
2rR2

.

The joint probability of drawing two points P and Q defining an accep-
table (r; ω) pair is

f rð Þ dr dω ¼ S r dr dω
π2 R2

1 R
2
2
: (35)

We first estimate the values of S according to the value of r relative to
R1; R2; and 2R1 if it is lower thanR2; R2 � R1; andR1 þ R2. Then we inte-
grate f rð Þ dr dω with respect to ω. To give the result of this integration, it
is convenient to define:

Figure 3. The annulus and its translated image, which enable us to define the areas S where P
must lie, in order to define an acceptable (r; ω) pair.

MATHEMATICAL POPULATION STUDIES 11



K rð Þ : ¼ 4r

π R2
2 � R2

1ð Þ2 : (36)

If R1 � R2
2 , we go to the next case; otherwise, if R2 � R1 � r < 2R1, then

f rð Þ ¼ K rð Þ R2
2 α2 � cos α2 sin α2ð Þ � R2

1 π � α1 þ cos α1 sin α1ð Þ� �
: (37)

If R2 � R1 � r < 2R1, then

f rð Þ ¼ K rð Þ
�
R2
2 α2 � α4 � cos α2 sin α1ð Þ�R2

1

�
α1 � α2 � cos α1 sin α1

� sin α3 þ α4ð Þ sin α3 � α1ð Þ � sin 2 α1ð Þ sin α1 � α4ð Þ
sin α1 þ α4ð Þ

��
: (38)

If R1 � R2
2 and R2 � R1 � r <R1 þ R2, or if R1>

R2
2 and 2R1 � r < R1 þ R2,

then

f rð Þ ¼ K rð Þ
�
R2
2 α2 � α4 � cos α2 sin α2 þ cos α4 sin α4ð Þ

�R2
1 α3 � cos α3 sin α3ð Þ

�
: (39)

If R1 þ R2 � r � 2R2, then

f rð Þ ¼ K rð Þ α2 � cos α2 sin α2ð Þ: (40)

Figure 4 presents the curve obtained for R1 ¼ 10 and R2 ¼ 30, which we
compare to the case of inhabited areas of Réunion Island (points indicated by
a cross “x”). Why we traced a solid curve up to 52 km and a dotted line
beyond 52 km is explained in section 3.2. We shall not test for Taylor’s law
here, as the formulas are too complicated, but as shown in section 1, it holds
true for any scaling cR1 and cR2; for c > 0.

2.5. Other shapes

Taylor’s law applies to other shapes, but the formulas grow increasingly
complicated from triangles (Borel, 1924) to rectangles (Mathai et al., 1999),
convex polygons (Borel, 1924), and ellipsoids (Parry and Fischbach, 2000).

3. Populations distributed nonuniformly over a discretized territory

The distribution of distances between two random individuals in a contin-
uous territory (such as those considered in section 2) could be analyzed
assuming a nonuniform spatial distribution of population by weighting the
probability density function of the distance between the locations of the
individuals by the population densities or counts at each terminus of the
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line segment between the two randomly chosen individuals (Tu and
Fischbach, 2002). A computationally easy way to introduce population den-
sity into the calculations is to assume discrete populations with a finite total
number of individuals located in a finite total number of areas. Most prob-
ability calculations should remain unchanged. Gridded population counts or
estimates and gridded population maps are now available in many countries
(at http://sedac.ciesin.columbia.edu/data/collection/gpw-v4). We can then
verify theoretical results empirically.

3.1. Square populated by one individual in each cell

Consider a square of side R divided into n2 square areas of side R
n , with a

single individual at the center of each cell. The density of each such cell is

δ ¼ n2
R2 , with a total number of pairs of cells equal to

C ¼ n2 n2 � 1ð Þ
2

: (41)

Distance in km

Probability distribution of distances
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0.00
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up to 52 km

Observed values

Uniform distribution
beyond 52 km

Figure 4. Probability distribution of distances obtained for an annulus of radii 10 and 30 with
uniform distribution (solid line up to 52 km, dotted line beyond), with the values observed for
inhabited areas of Réunion Island (points indicated by a cross “x”).
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This number grows rapidly: for the n2 ¼ 36,000 French municipalities
(approximately), the total number of pairs is nearly 6:5� 108.

To count the total number of pairs at a distance r ¼ R a2þb2ð Þ 1=2
n , we shift the

square of side R by one of the translation vectors QP
	!

a ; �bð Þ or b; �að Þ, as we
did with the annulus. The common surface of the square and each of its
translated squares has an area equal to n� að Þ n� bð Þ, which is also the total
number of pairs for each translation. If a ¼ b or a ¼ 0 or b ¼ 0, then there
are two possible translations; otherwise there are four. The probability mass
functions of the distance X between two points chosen at random in the square
is equal to this count divided by the total number of cases given in Eq. (41).

We calculate the mean distance between two individuals selected at ran-
dom on the territory

E Xð Þ ¼ 2
n2 n2 � 1ð Þ�

R
n

2n n� 1ð Þ þ 2
ffiffiffi
2

p
n� 1ð Þ2 þ 4n n� 2ð Þ þ 4

ffiffiffi
5

p
n� 1ð Þ n� 2ð Þ þ 	 	 	

� �
;

(42)

and its variance

Var Xð Þ ¼ 2
n2 n2 � 1ð Þ�

R2

n2
2n n� 1ð Þ þ 4 n� 1ð Þ2 þ 8n n� 2ð Þ þ 20 n� 1ð Þ n� 2ð Þ þ 	 	 	� �

:

(43)

This distribution obeys Taylor’s law with b ¼ 2. However, the relationship
between E Xð Þ and Var Xð Þ now depends on the total number of areas. When
the latter increases, the distribution tends toward a continuous distribution.

Figure 5 gives the example of a square of side
ffiffi
2

p
2 divided into 100 square

areas of side
ffiffi
2

p
20 , with distances grouped into 14 classes. The mean E Xð Þ ¼

0:5229 and the variance Var Xð Þ ¼ 0:0628 of the distance between two
randomly selected points from this distribution are very close to the values
for a population distributed uniformly over the same square, for which
E Xð Þ ¼ 0:5214 and Var Xð Þ ¼ 0:0615. Figure 5 presents the fit.

3.2. Réunion Island and metropolitan France discretized by uniform
gridded cells

Geographic grids of 1 square km introduced in several countries provide
comparable data on human population distributions. The Lambert
Azimuthal Equal Area projection (INSPIRE_Specification_GGS_v3.0.1.pdf
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available on the Internet) is the standard in Europe. The systems used in
other areas are very similar.

Réunion

Réunion Island is roughly circular, with an uninhabited central region
(Figure 2). Each cell of this annulus is associated with the indicator “inhab-
ited or not.” Using the data supplied by Insee, the French National Institute
of Statistics and Economic Studies, we calculate the distribution of distances
between two randomly chosen inhabited areas.

Figure 4 showed empirical along with theoretical probabilities of distances
between two random individuals resulting from the model of Eq. (37) to (40)
for a uniform distribution on an annulus. The root mean squared error

RMSE ¼
Pn
i¼1

p̂i � pi
� �2
n� k

0
BB@

1
CCA

1=2

(44)

Distance

Probability

0.0 0.5 1.0
0.00

0.05

0.10

0.15

Continuous distribution 

Discrete distribution 

Figure 5. Distribution of distances grouped in 14 classes for a square of side
ffiffi
2

p
2 divided into

squares of side
ffiffi
2

p
20 (black dots) compared with a continuous distribution (black line).
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quantifies the goodness of fit, where p̂i is the observed frequency of distances
di, pi the theoretical frequency, n the total number of observed distances, and
k the total number of estimated parameters. In Figure 1, the shape of the
territory (a square or a circle) affects the tail of the distribution. We estimate
the root mean squared error omitting this tail, which is empirically deter-
mined when the theoretical and the observed curves begin to diverge, as the
boundaries become more complicated. For Réunion Island, setting this tail at
distances above 52 km leads to a root mean square error of 0.003025 for 19
degrees of freedom (21 classes of distance minus two estimated parameters),
for an internal radius of 10 km and an external radius of 30 km. From 52 km
to the maximum distance of 70 km (dotted line in Figure 4), the tail of the
empirical distribution is longer than for the annulus, because the island is
ellipsoidal rather than circular.

Metropolitan France

Metropolitan France comprises 375,279 inhabited areas of 1 square km,
which makes nearly 70.4 × 109 pairs of areas. A 10% sample is enough and
tractable to estimate the distribution of distances. Figure 6 compares the
sampled frequency distribution of distances between two randomly selected
inhabited square kilometers (indicated by crosses “x”) with the theoretical
probability density function of distances between two uniformly randomly
chosen points from a square of side 728 km. We estimated the size of this
square by a nonlinear least-square regression. The resulting root mean
squared error is 0.00012 with 144 degrees of freedom, for distances less
than 730 km.

Figure 6 shows that the empirical frequency exceeds the theoretical fre-
quency for distances from 730 km to 1370 km (dotted line on Figure 6). The
empirical frequency slightly exceeds the theoretical frequency for distances
up to 200 km and is slightly less than the theoretical frequency for distances
from 500 km to 650 km.

However, the surface of metropolitan France is far from square, and only
375,279 of 551,500 areas of 1 square km are populated. The similarity of the
sampled and the theoretical curves shows that the presence of many unin-
habited areas does not affect the center of the distribution of distances
between inhabited areas.

3.3. Square with nonuniformly populated areas

We now consider nonuniformly populated areas. A square of side R is
divided into n2 equal square cells i with different population sizes, Pi,
assuming that individuals are uniformly distributed in each cell. The
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country’s total population is P ¼Pn2
i¼1

Pi and the population density of cell i is

δi ¼ Pi n
2

R2 . The total number of pairs of individuals in the population is

C ¼ P P� 1ð Þ
2

¼ 1
2

Xn2
i¼1

P2i þ 2
X
j�i

Xn2
i¼1

Pi Pj �
Xn2
i¼1

Pi

 !
: (45)

A population of 65� 106 individuals, as in metropolitan France, counts
2:1� 1015 pairs of individuals.

We determine the mean distance between individuals inhabiting the same
cell. This case is similar to Eq. (33) for the continuous distribution, yielding a
mean distance close to R

2n . The total number of pairs is given by the first and
the third terms in Eq. (45):

Distance in km
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up to 730 km
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beyond 730 km
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Figure 6. Frequency distribution of a random sample of distances (indicated by crosses “x”)
between 1 km × 1 km squares for metropolitan France compared with the theoretical probability
density function of distances between two points taken at random from a square with side 728
km (solid line up to 730 km, dotted line beyond).

MATHEMATICAL POPULATION STUDIES 17



Xn2
i¼1

Pi Pi � 1ð Þ
2

¼ 1
2

Xn2
i¼1

P2i �
Xn2
i¼1

Pi

 !
: (46)

The total number of pairs of individuals inhabiting different cells equals the
sum of the products PiPj for each of the pairs of areas located at a given distance r.

3.4. Computing with population density for Réunion and metropolitan
France

Réunion

Figure 7 is built from the gridded Insee data for Réunion Island on the
population sizes of each area of 1 square km, which are the population
densities.

As the population is concentrated in coastal cities, we used a smaller range
of internal and external radius values, from 18 km to 26 km, than in our
comparison between inhabited and uninhabited areas. Omitting distances
greater than 52 km, the root mean squared error for 19 degrees of freedom is
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Figure 7. Frequency distribution of distances in km between two individuals taken at random
observed for Réunion Island (crosses) compared with the theoretical distribution obtained for an
annulus (solid line) with uniform population density.
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0.007349, more than twice the previous value. The empirical tail of the
distribution is longer because the island is ellipsoidal and has slightly higher
observed frequencies around 15 km, which is the distance between the
island’s two largest cities: Saint-Denis (population size 144,000) and Saint-
Paul (population size 103,000).

Metropolitan France

The results for metropolitan France depend on the spatial scale. First we
group distances into intervals of 100 km by aggregating the observations at
the fine scale of 1 km square. We compare this distribution with the
theoretical uniform distribution for a square (Figure 8).

In this case, the root mean squared error is 0.01064 for 14 degrees of
freedom for a theoretical square with an estimated side of 791 km. The main
discrepancy is for the first distance, where the observed frequency is more
than twice the theoretical frequency. It is due to the population concentration
in metropolitan areas.
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Figure 8. Frequency distribution of distances in km between two randomly chosen individuals in
metropolitan France for a grouping into 100-km classes (indicated by crosses “x”), compared with
the theoretical distribution (solid line up to 730 km, dotted line hereafter) with uniform
population density on a square.
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If distances are grouped into 5 km classes and compared to a theoretical
uniform distribution of population in a square with an estimated side of 798
km (Figure 9), the root mean squared error is 0.001212 for 144 degrees of
freedom, ten times higher than the value calculated for inhabited areas.
Deviations from the theoretical curve are noteworthy.

The local relative maxima at certain distances reflect the distribution of metro-
politan France’s population living in large cities. They correspond to “as the crow
flies” distances between pairs of regional metropolises: around 100 km between
Paris and Rouen or between Paris and Orléans, 200 km between Paris and Lille,
300 km between Lyon and Marseille, 400 km between Paris and Lyon or between
Paris and Strasbourg, 500 km between Paris and Bordeaux, 600 km between Paris
and Toulouse, and 700 km between Paris and Marseille. The peaks at short
distance correspond to the suburbs of these metropolises, in particular the Paris
conurbation, as already observed on the 100 km scale (Figure 8). Réunion Island
also displays a maximum for the distance between the cities of Saint-Denis and
Saint-Paul. The smooth pattern predicted by geometric probability is overlaid by
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Figure 9. Frequency distribution of distances (km) between two randomly chosen individuals in
metropolitan France for a grouping into 5 km classes (crosses), compared with the theoretical
distribution (solid line up to 730 km, dotted line beyond) of a square with estimated side 798 km
with uniform population density.
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the discrete pattern of urban concentrations, with large cities at distances of
multiples of 100 km in metropolitan France.

Conclusion

For elements distributed spatially, Taylor’s law relates the mean and the
variance of densities in subgroups. We have shown theoretically that
Taylor’s law applies also to the distances between two randomly chosen
points in various geometric shapes and under broad conditions.

For Réunion Island and metropolitan France and at some spatial scales, the
empirical frequency distributions of inter-individual distances are predicted accu-
rately by the theoretical frequency distributions of distances between two points in
models of geometric probability based on the uniform distribution. When these
models predict poorly, they provide baselines against which to highlight concen-
trations of population. For example, the observed distribution of distances
between two randomly drawn people in metropolitan France is close to the
theoretical distribution when distances are grouped into intervals of 100 km, but
grouping distances into intervals of 5 km highlights peaks of observed frequency
corresponding to the distances between regional metropolises.
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